Disk initial conditions combined with formation processes determine the bulk composition of a planet. I will discuss new work showing that the masses of observed protoplanetary disks may be larger than previously thought and suggest that the features of high-mass disks, combined with the efficacy of pebble accretion in turbulent gas, may explain the observed distribution of giant planets. Within this context, I will suggest a possible source for the observed correlation between planet mass and metallicity among giants, discuss implications for planetary system architectures, and provide predictions for correlations between the compositions of low-mass planets discovered by Kepler/K2 and the likely presence and properties of giant planets orbiting the same stars on more distant orbits.