You are here

A PHAT New Measurement of High-Mass Stellar IMF

Dan Weisz, University of Washington
Thursday, January 14, 2016 - 4:00pm to 5:00pm
PAA A-102

​The initial mass function (IMF) for stars above ~1 Msun is essential to testing and validating theories of star formation, constraining chemical enrichment models, the frequency of core-collapse supernovae, and interpreting the stellar populations of galaxies across cosmic time. Yet, despite more than 60 years of research, observational constraints on the high-mass IMF remain remarkably uncertain. Widely used high-mass IMFs (e.g., Kroupa) have associated uncertainties approaching an order-of-magnitude, making it virtually impossible to determine if the high-mass IMF varies with respect to environment (e.g., metallicity or star formation intensity) or is “universal”. In this talk, I will present the most precise measurement of the high-mass IMF to date. Using ~100 young, resolved star clusters imaged as part of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, we find the high-mass IMF slope in M31 to be Gamma=1.45+/-0.03. Compared to the canonical Kroupa IMF (Gamma=1.3+/-0.7), the high-mass IMF in M31 is 0.15 dex steeper (i.e., fewer massive stars) and represents a factor of ~20 improvement in precision. There are no significant trends between the cluster IMF slopes and their ages, masses, and sizes, indicating that the IMF is remarkably “universal” in this sample of ~100 clusters. I will illustrate some of the broader implications of a steeper IMF slope (e.g., on star formation rate indicators, core-collapse supernovae rates) and will conclude by discussing the prospects for precision IMF measurements in other environments.

Event Type: