You are here

Large-Scale Integrated Photonics for Twenty-First Century Information Technologies.

Ray Beausoleil, HP Labs, Palo Alto
Monday, October 29, 2012 - 4:00pm to 5:00pm
PAA A-102

​Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of this decade. Although the physics of nanoscale silicon transistors alone could allow these expectations to (almost) be met, the physics of the metal wires that connect these transistors will soon place stringent limits on the performance of integrated circuits. We will describe a Si-compatible global interconnect architecture - based on chip-scale optical wavelength division multiplexing - that could precipitate an "optical Moore's Law" and allow exponential performance gains until the transistors themselves become the bottleneck. Based on similar fabrication techniques and technologies, we will also present quantum approaches to optically-coupled information processors for computation beyond Moore's Law. First, it may be possible to harness devices with explicitly quantum coherent behavior to perform reliable classical computations using quantum feedback control, but research in this field is just getting underway. Second, we will present recent results demonstrating the optical coupling of nitrogen-vacancy color centers to single-crystal diamond resonators, allowing enhancement of the zero-photon transition rate by a factor of 70. This is a first critical step towards large-scale integrated diamond quantum optical networks, but scaling remains a formidable challenge for the development of practical applications of quantum information technology for commercial utilization.

Bio: Ray Beausoleil is an HP Fellow in the Intelligent Infrastructure Lab (IIL) at HP Laboratories, and a Consulting Professor of Applied Physics at Stanford University. At HP, he leads the Large-Scale Integrated Photonics research group, and is responsible for research on the applications of optics at the micro/nanoscale to high-performance classical and quantum information processing. His current projects include photonic interconnects for exascale computing, integrated diamond photonics, and low-power complex nanophotonic circuits. Ray received the Bachelor of Science with Honors in Physics from the California Institute of Technology in 1980; the Master of Science degree in Physics from Stanford University in 1984; and his Ph.D. in Physics from Stanford in 1986 as a member of Ted Hansch's research group. In 1996, Ray became a member of the technical staff at HP Laboratories, after serving as an officer or director of R&D at three small companies in the laser and computer industries. Among his early accomplishments at HP, he invented the optical paper-navigation algorithms incorporated into the HP/Agilent optical mouse, and now HP's large-format printers.

Event Type: