In optics, the era of glass lenses may be waning.
In recent years, physicists and engineers have been designing, constructing and testing different types of ultrathin materials that could replace the thick glass lenses used today in cameras and imaging systems. Critically, these engineered lenses — known as metalenses — are not made of glass. Instead, they consist of materials constructed at the nanoscale into arrays of columns or fin-like structures. These formations can interact with incoming light, directing it toward a single focal point for imaging purposes.
But even though metalenses are much thinner than glass lenses, they still rely on “high aspect ratio” structures, in which the column or fin-like structures are much taller than they are wide, making them prone to collapsing and falling over. Furthermore, these structures have always been near the wavelength of light they’re interacting with in thickness — until now.
In a paper published Oct. 8 in the journal Nano Letters, a team from the University of Washington and the National Tsing Hua University in Taiwan announced that it has constructed functional metalenses that are one-tenth to one-half the thickness of the wavelengths of light that they focus. Their metalenses, which were constructed out of layered 2D materials, were as thin as 190 nanometers — less than 1/100,000ths of an inch thick.
You are here
Scientists engineer a functional optical lens out of 2D materials
Submitted by Shane D Debolt on November 15, 2018 - 9:53am