Physics 227: Elementary Mathematical Physics (part 1 of 2)

Based on A17 as taught by Aurel Bulgac and A12-14 as taught by Steve Sharpe.

Overview

This course introduces the mathematical tools needed for advanced undergraduate and beginning graduate physics classes. The emphasis is on problem solving rather than on rigorous proofs. There are 4 lectures per week, plus a Mathematica and problem-solving tutorial. Basic use of a computer mathematics program such as Mathematica is now an integral part of this course and its discussion might be included in the lectures.

Evaluation

Weekly written quizzes, two midterms and one final exam. Weekly homeworks are assigned but not graded.

Texts

1. **Required:** *Mathematical Methods in the Physical Sciences*, Mary L. Boas (Wiley, 3rd ed., 2006)

Topics (approximate; chapters refer to Boas)

- 1. **Ch. 1 (4 lectures):** Series, convergence tests, power series, truncation errors.
- 2. **Ch. 2 (4 lectures)** Complex numbers, equations & series; applications.
- 3. **Ch. 3 (19-20 lectures)**: Vectors, scalar & vector products; Matrices & linear transformations, index notation; Rotation matrices; General classes of matrices; Determinant and inverse; Solving linear equations; General vector spaces & inner products; Schwartz inequality; Gram-Schmidt orthogonalization; Eigenvalues & eigenvectors; Application to normal modes; Introduction to group theory.
- 4. **Ch. 6 (7-8 lectures):** Triple vector product; Directional derivative; Grad, Div, Curl & Laplacian in various coordinate systems; Line integrals & conservative forces; Stokes & divergence theorems & applications.
- 5. Ch. 7 (4 lectures): Fourier Series, Fourier transforms & applications