115A - STEPHANIK

Please use the boxes below to <u>clearly print</u> your name and UW NetID. <u>Please write within the boxes</u>.

Printed Name		
	first	last

UW Net ID

(part before @uw.edu)

I certify that the work I shall submit is my own creation, not copied from any source.

Signature	
Dignature.	_

_____ Seat Number _____

Clearly fill out this cover page and the top portion of the provided bubble sheet with the necessary information.

Do <u>not</u> open the exam until told to do so. When prompted, clearly print the information required at the top of <u>each page</u> of this exam booklet. You can remove the equation sheet(s). Otherwise, keep the exam booklet intact. You will have <u>60 minutes</u> to complete the examination.

(part before @uw.edu)

I. [60 pts] Multiple Choice: Mark your answer on BOTH the bubble sheet and this page.

- 1. [5 pts] A positively charged rod (net charge +Q) attracts a neutral insulator without the rod and the insulator touching each other. Choose the correct explanation for this observation.
 - A. A total charge of -Q is induced in the insulator, causing an attractive force.
 - B. All the negative charge of the insulator is pulled to the edge of the insulator that is closest to the rod, causing an attractive force.
 - C. Objects with excess charge always repels electrically neutral objects even if the charge in the insulator cannot move.
 - D. The atoms of the insulator get polarized in such a way that slightly more negative than positive charge is closer to the rod, causing an attractive force.

- 2. [5 pts] A proton and two electrons are fixed in place as shown. What is the *x*-component of the electric force on the **top-right electron?** A coordinate system is defined in the diagram.
 - A. $2.5 \times 10^{-25} \,\mathrm{N}$
 - B. -4.2×10^{-26} N
 - C. $-7.2 \times 10^{-26} \,\mathrm{N}$
 - D. $-9.3 \times 10^{-26} \text{ N}$
 - E. None of these

Na	me		UW Net ID	
	last	first	(part before @u	w.edu)
3.	[5 pts] An electri the diagram belo point <i>P</i> ?	c dipole is illustrated at right. Whi w best represents the direction of t	ch of the vectors $A - E$ in the electric field at	• P
	A. Vector A			A
	B. Vector B		\cup	
	C. Vector C		A	1 ^B
	D. Vector D			C
	E. Vector E		E	

- 4. [5 pts] A neutral conductor is placed near a large positively charged plate. Rank, from greatest to least, the four points according to the magnitude of the electric field.
 - A. 4 > 3 > 2 > 1
 - B. 4 > 1 > 3 = 2
 - C. 1 > 2 > 3 > 4
 - D. 2 = 3 > 4 > 1
 - E. 4 > 2 > 3 > 1

(part before @uw.edu)

5. [5 pts] A positive charge is moved at constant speed from point A to point B in a uniform electric field as shown at right. Choose the correct statement for the work W done by the external force moving the charge and the change of the electric potential energy of the charge configuration, ΔU .

A.
$$W > 0$$
, $\Delta U < 0$

- B. W > 0, $\Delta U > 0$
- C. W = 0, $\Delta U = 0$
- D. W < 0, $\Delta U < 0$
- E. W < 0, $\Delta U > 0$

6. [5 pts] Two point charges are fixed in place, as shown. Three regions are defined; regions L and R are large but do not extend to infinity. In which regions could the electric potential be zero?

- A. Only region L
- B. Only region C
- C. Only region R
- D. Both regions L and R
- E. Both regions L and C

UW Net ID _________(part before @uw.edu)

- 7. [5 pts] Along the x-axis, the electric potential depends on x, the distance from the origin, as V(x) = Cx, where C is a constant. What is the magnitude of the electric field on the x-axis?
 - A. E(x) = C
 - B. $E(x) = Cx^2$
 - C. E(x) = C/x
 - D. E(x) = Cx
 - E. E(x) = 0

8. [5 pts] At the instant shown in the diagram, the heart can be modeled as an electric dipole. The dashed line represents a small portion of a much larger equipotential line.

first

Suppose that at the instant shown, electrodes placed at locations c and a are measured to have voltage $V_a - V_c > 0$.

What can be said about the sign of the voltage $V_b - V_a$ between electrodes *a* and *b*?

A.
$$V_b - V_a > 0$$

- B. $V_b V_a < 0$
- C. $V_b V_a = 0$
- D. More information is needed.

Name

last

first

(part before @uw.edu)

9. [5 pts] A vacuum parallel plate capacitor is composed of two identical square conductors (plates) that are separated by 0.01 m. When a 100-volt battery is attached to the plates, the charge stored on the positive plate is measured to be $4.0 \ \mu\text{C} = 4.0 \times 10^{-6} \text{ C}$. What is the **area** of each plate?

- B. 6.7 m²
- $C. 45 \ m^2$
- D. 67 m^2
- E. None of these

10. [5 pts] A capacitor is initially connected to a battery to charge its plates. It is then disconnected from the battery, as shown.

Suppose a dielectric slab with dielectric constant 5 is inserted into the capacitor while it is disconnected from the battery. How does the energy stored in the capacitors change due to the dielectric?

- A. Energy increases by a factor of 5
- B. Energy decreases by a factor of 5
- C. Energy increases by a factor of 25
- D. Energy decreases by a factor of 25
- E. Energy remains the same.

Name UW		UW Ne	et ID	
last	first		(part before	@uw.edu)
11. [5 pts] An experi	ment is conducted on an unknown	n electrical device.	I (amps)	$ \Delta V $ (volts)
current is measur	red. The data is shown at right.	d the resulting	2	6
Based on this dat	a, can the device be considered of	hmic?	3	8
A. Yes, the devi	ce is ohmic because equal change	es in voltage result	4	10
in equal char	ages in current.	8	5	12
B. Yes, the devi	ces is ohmic because only whole	numbers are measu	red.	

- C. No, the device is not ohmic because only whole numbers are measured.
- D. No, the device is not ohmic because the resistance is different for each data point.

- 12. [5 pts] A portion of a circuit is shown in the diagram. Determine the current in the unknown wire, including its direction.
 - A. 0 A (no current)
 - B. 1 A, rightward
 - C. 5 A, leftward
 - D. 10 A, leftward
 - E. 11 A, rightward

(part before @uw.edu)

II. Lecture long-answer questions (20 points total)

Consider the circuit shown at right for the next two questions.

first

13. [5 pts] Draw an equivalent circuit containing only one resistor and express the equivalent resistance with the quantities given in the original circuit. Explain how you determined the equivalent resistance.

14. [5 pts] Express Kirchhoff's loop law for the equivalent circuit and determine the current through the battery.

Name

last

Name		UW Net ID		
last	first	(part before @uw.edu)		
Consider the circuit s	hown at right for the next two questions.	_		

15. [4 pts] What are the charge Q on the capacitor and the current I through the resistor when the switch has been in position a for a long time? Show your work.

- 16. The switch is changed to position b at t = 0 s.
 - i. [3 pts] What is the current *I* through the resistor immediately after the switch is changed? Show your work.

ii. [3 pts] What is the current *I* through the resistor at $t = 50 \ \mu s$? Show your work.

last

(part before @uw.edu)

III. Tutorial and lab long answer questions (20 points total)

first

Use this context for questions 17 and 18.

Two experiments involve charged particles: In case 1, two positively charged particles, A and B are held a distance *x* apart as shown. The magnitude of the charge on particle A is *greater than* the magnitude of the charge on particle B ($|q_A| > |q_B|$).

In case 2, particle B is replaced by three identical particles of charge $q_{\rm B}/3$ that lie along a line as shown.

17. [5 pts] In case 1, is the magnitude of the electric force on particle A *greater than*, *less than*, or *equal to* the magnitude of the electric force on particle B? Explain.

18. [5 pts] Is the magnitude of the net electric force on particle A in case 2 greater than, less than, or equal to the magnitude of the electric force on particle A in case 1? Explain.

Name		UW Net ID
last	first	(part before @uw.edu)
19. [5 pts] An elec	tron is present in a uniform horizontal electric ion of the field is not shown). At point A the	

field (the direction is present in a uniform horizontal electric field (the direction of the field is not shown). At point A, the electron has a speed ν and is moving to the left. At point B, the electron has a speed $\nu/2$.

Does the electric field point to the right or the left? Explain.

≪—─○	← ── 0
В	A

20. [5 pts] A capacitor is connected to an ideal battery of voltage V_0 . The distance between the two plates is then increased, while the capacitor remains connected to the battery. Will the magnitude of the charge on the plates *increase, decrease* or *remain the same* as a result of increasing the distance between the plates? Explain.

115 Equation Sheet: Final

Physical Constants

Elementary charge: $e =$	$1.60 \times$	10^{-19}	С
--------------------------	---------------	------------	---

Electron mass:

Couloumb's constant:

$$K = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$$

Permittivity of free-space:

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$$

 $m_e = 9.11 \times 10^{-31} \text{ kg}$

Permeability constant:

μ_0	$_{0} = 1.26 \times 10^{-6} \mathrm{T} \cdot \mathrm{m/A}$
Boltzmann's constant:	$k_{\rm B} = 1.38 \times 10^{-23} {\rm J/K}$
Avogadro's number:	$N_A = 6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant:	$R=8.31\mathrm{J/mol}\cdot\mathrm{K}$
Boltzmann-Stefan cons	tant:
$\sigma =$	$5.67 \times 10^{-8} \mathrm{W/(m^2 \cdot K^4)}$

Unit Conversions

Electron volt:	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Calorie:	$1 \operatorname{Cal} = 4186 \operatorname{J}$

Helpful Equations from 114

Kinematics (constant acceleration):

$x_f = x$	$c_i + (v_x)_i \Delta t + \frac{1}{2}a_x(\Delta t)^2$
	$(v_x)_f = (v_x)_i + a_x \Delta t$
	$(v_x)_f^2 = (v_x)_i^2 + 2a_x \Delta x$
Newton's 2nd Law:	$ec{a} = rac{ec{F}_{ m net}}{m}$
Weight (Gravitational I	Force): $F_g = mg$
Work:	$W = F_{\parallel} d = F d \cos \theta$
Work-Energy Theorem:	$\Delta E_{mech} = W$
Kinetic Energy:	$K = \frac{1}{2}mv^2$
Gravitational Potential	Energy: $U_g = mgy$

Power:	$P = \frac{\Delta E}{\Delta t}$
Momentum:	p = mv

Chapter 20:

Coulomb's Law:	$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{K q_1 q_2 }{r_1^2}$
Electric field:	$ec{E}=rac{ec{F}_{\mathrm{on}\mathrm{q}}}{q}$

Electric field for a point charge: $E = \frac{K|q|}{r^2}$ Electric field in a parallel-plate capacitor:

 $E = \frac{Q}{\epsilon_0 A}$

Chapter 21:

Electric Potential Energy:	$U_{elec} = qV$
Electric Energy Conservation:	

$$\Delta E = \Delta K + \Delta U_{elec}$$

Electric Potential of a Point	Charge: $V =$	$=\frac{Kq}{r}$
Capacitance:	$C = \frac{\epsilon_0 A}{d} =$	$\frac{Q}{\Delta V_C}$

Energy stored in a capacitor: $U_C = \frac{1}{2}C(\Delta V_C)^2$

Electric Field inside a parallel-plate capacitor: $E = \frac{\Delta V_C}{d}$

Chapter 22:

Current:
$$I = \frac{\Delta q}{\Delta t}$$

Resistance: $R = \frac{\rho L}{A}$
Ohm's Law: $I = \frac{\Delta V}{R}$

Power dissipated across a resistor:

$$P_R = I\Delta V_R = I^2 R = \frac{(\Delta V_R)^2}{R}$$

 $\sum I_{in} = \sum I_{out}$

Batteries in series: $\Delta V_{\text{total}} = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3 + \dots$

Chapter 23:

0

Kirchoff's Junction rule:

Equivalent resistance:

Series: $R_{eq} = R_1 + R_2 + R_3...$ Parallel: $R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + ...\right)^{-1}$

Equivalent capacitance:

Series:	$C_{eq} =$	$\left(\frac{1}{C_1}+\right)$	$-\frac{1}{C_2}$ -	$+\frac{1}{C_3}+$)
Parallol		C -	$C \perp$	$C_{-} \perp$	$C_{-} \perp$

Parallel:	$C_{eq} \equiv C_1 + C_2 + C_3 + \dots$
RC Time Constant:	au = RC

Current in an RC Circuit:

$$I = I_0 e^{-t/\tau}$$

τ

Radiation:

Potential in an RC Circuit:

Charging:	$V_C = (V_C)_0 (1 - e^{-t/\tau})$
Discharging:	$V_C = (V_C)_0 e^{-t/\tau}$

Chapter 24:

Magnetic field due to:

Long straight wire:	$B = \frac{\mu_0 I}{2\pi r}$
Current loop:	$B = \frac{\mu_0 I}{2R}$
Solenoid:	$B = \frac{\mu_0 NI}{L}$

Force on moving charge: $F = |q| vB \sin \alpha$ Force on current-carrying wire: $F = ILB \sin \alpha$ Circular motion radius for charge in magnetic field: $r = \frac{mv}{|q| B}$

Chapter 11:

Efficiency:
$$e = \frac{\text{what you get}}{\text{what you had to pay}} = \frac{W_{\text{out}}}{Q_{\text{H}}}$$

Maximum efficiency: $e_{\text{max}} = 1 - \frac{T_{\text{C}}}{T_{\text{H}}}$
Fahrenheit conversion: $T(^{\circ}C) = \frac{5}{9}[T(^{\circ}F) - 32^{\circ}]$
Kelvin conversion: $T(K) = T(^{\circ}C) + 273$
First law of thermodynamics: $\Delta E_{\text{th}} = W + Q$
Entropy change at constant temp.: $\Delta S = \frac{Q}{T}$
Entropy change of universe: $\Delta S_{\text{univ}} > 0$

Chapter 12:

-	
Number of moles:	$n = \frac{M(\text{in grams})}{M_{\text{mol}}}$
Thermal energy:	$E_{\rm th} = \frac{3}{2}k_B NT$
rms speed:	$v_{\rm rms} = \sqrt{\frac{3k_{\rm B}T}{m}}$
Pressure:	$p = \frac{F}{A}$
Ideal gas law:	$pV = Nk_{\rm B}T = nRT$
Volume thermal expansion	n: $\Delta V = \beta V_{i} \Delta T$
Linear thermal expansion	: $\Delta L = \alpha L_{i} \Delta T$
Specific heat:	$Q = Mc\Delta T$
Heat of transformation:	$Q = \pm ML$
Molar specific heat:	
at constant volume:	$Q = nC_{\rm V}\Delta T$
at constant pressure:	$Q = nC_{\rm P}\Delta T$
Conduction:	$\frac{Q}{\Delta t} = \left(\frac{kA}{L}\right) \Delta T$

 $\frac{Q}{\Delta t} = e\sigma A T^4$