Name:

last

(portion before @uw.edu)

- I. Lecture Multiple Choice [60 pts]. Choose only one answer for each question and fill it out on your bubble sheet.
- 30% [5 pts] A long cylinder of radius 2.3 cm and length 5.4 m has its length doubled but its radius remains 1. unchanged. By what factor does its surface area to volume ratio change? Hint: you can ignore the area of the end caps since they are so small compared to the length. RSA

first

A. 1
B. 2
$$\mathcal{R}.S.A = \frac{S}{V}$$

C. $\frac{1}{2}$
D. 4 = $(2\pi r)\mathcal{R} = 2$ $\implies \mathcal{R}.SA$ depends on r but not ℓ
E. $\frac{1}{4}$ $\frac{1}{\pi r^{2}\mathcal{R}} = \frac{2}{r} \implies \mathcal{R}.S.A$ will not change when
 $r \Rightarrow change while ℓ kept const.$

2. [5 pts] Gold is about \$85,000 per kg. To save money the queen decides to reduce the radius of each coin by 25% but doesn't change its thickness. By what percentage are the new coins cheaper to make, in terms

The amount of gold can be of gold costs? A. 25% measured using volume B. 44% C. 56% \Rightarrow Price $\propto V = \pi r^2 t$ D. 75% <u>Price = Vold - Vrev</u> = Price dd Vold = E. None of these 1 = 0.751 J (0.75) rda 3. [5 pts] Which of the motion diagrams at right represent(s) an object first accelerating to the left then having zero acceleration? 38% A. A only. In A: accel. to right then no accel X In 13: accel. to left then no accel V In C: accel. to right then no accel X B. B only. C. C only. D. A and B but not C.

E. B and C but not A.

E. Both pebbles will have the same final speed when they hit the ground.

Name			UW Net ID				
	last	first	(portion before @uw.edu)				
и. 59% 2. 40%	A humanitarian relie with supplies and is the with a constant veloc resistance for all profit [5 pts] What is the ver- magnitude) of the cra- from the airplane? v=65 m/s in +x direc [5 pts] If the plane is much time will it tak ground? Now only need y-du Use $y_f=y_0+v_{0y}t+\frac{1}{2}$	If plane is carrying a crate filled flying level with the ground city of 65 m/s. Ignore air blems. elocity (direction and ate the instant after it is dropped ction. No other component yet. at a height of 500 m, how the for the crate to reach the irection to find the time. $\frac{1}{2} \frac{2y_c}{g}$	work or explain reasoning for full credit.				
	$t = \sqrt{\frac{2 \times 500m}{9.8 \text{m/s}^2}} = 10$).1 s	t = 10 s				
3.	its target?	•					
$C_{1}(0)$	Solve for x direction using previous time and velocity in the x-direction: $x_f = x_o + v_{ox} t + 0$ as there is no acceleration in the x-direction.						
59%	$x_f = 0 + 65 \ m/s \ 10s = 650 \ m$						
	Answer: No, it will overshoot the target by quite a bit.						
4.	[5 pts] What is the velocity of the crate the instant before it hits the ground? Both magnitude and direction. We need both the x and y components of the final velocity, and we already have the x component so we need only calculate the y-component. $v_{fy}^2 = v_{0y}^2 - 2g(y_f \cdot y_o) = 0 - 2 (9.8 \text{ m/s}^2)(0.500\text{ m}) = 9800 (\text{m/s})^2$ $v_{fy} = 99 \text{ m/s}$						
35%							

The magnitude is the sum of the squares, $v_{\rm f} = \sqrt{v_{\rm x}^2 + v_{\rm y}^2} = 118.4 \text{ m/s}$ The angle is from the +x axis given by $\tan(\theta) = \frac{v_y}{v_x}$, $\theta = \tan^{-1} \frac{99 \text{ m/s}}{65 \text{ m/s}} = 56.7^{\circ}$

v = 120 m/s Direction: 57° below x-axis (clockwise)

Name:			UW Net ID	
_	last	first		(portion before @uw.edu)

III. Tutorial Free Response [20 pts] Explain your answer where required.

17. [5 pts] A worm absorbs oxygen at its skin at a rate of 0.22 µmol/cm² every hour and consumes oxygen at a rate of 0.95 μ mole/g every hour. If the surface area of the worm is 17 cm² and its mass is 3.8 g. Is the worm able to survive? Explain your answer briefly. Solution:

We first find the total amount of oxygen absorbed per hour: $(0.22 \,\mu\text{mol/cm}^2) \times (17 \,\text{cm}^2) = 3.7 \,\mu\text{mol}$.

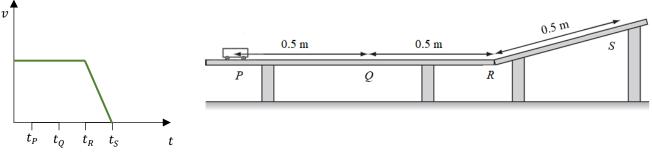
Next, we find the total amount consumed per hour: $(0.95 \,\mu\text{mol/cm}^2) \times (3.8 \,\text{cm}^2) = 3.6 \,\mu\text{mol}$. The worm would survive, because the amount of oxygen absorbed per hour is more than the mount consumed per hour.

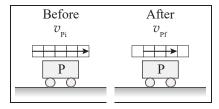
Cart P moves along with an initial velocity on a level, frictionless track. It collides with cart Q (not shown). The initial and final velocities of cart P are shown at right.

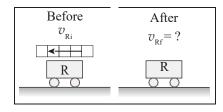
18. [5 pts] Draw a vector indicating the direction of the average acceleration of cart P during the collision.

Direction of \vec{a}_{avg}

Cart R moves along the same track and collides with cart S (not shown). The initial velocity of cart R is shown at right. Both collisions (PQ and RS) occur over the same time interval Δt . The magnitude of the average acceleration of cart R is twice that of cart P, and in the opposite direction.


19. [5 pts] In the grid below, draw a vector indicating the final velocity of cart R. Draw the vector to scale. Explain.


47%


Solution:

The magnitude of the average acceleration of cart R is twice that of cart P, and in the opposite direction. Since the change in velocity of cart P is 2 units to the left, then in the same time interval, the change in velocity of cart R is 4 units to the right. Since $\vec{v}_{Ri} + \Delta \vec{v} = \vec{v}_{Rf}$, the final velocity of cart R is 1 unit to the right.

20. [5 pts] A cart is given an initial push on a flat horizontal frictionless track. It passes point P then Q and then R, after which the track is inclined at an angle. The cart keeps moving until it stops at point S. In the space provided, plot a graph of the cart's speed v versus time t and assume the time between each two consecutive locations is 0.5 s.

